Plan B 4.0: Mobilizing to Save Civilization


Lester R. Brown

Chapter 6. Designing Cities for People: Redesigning Urban Transport

Urban transport systems based on a combination of rail lines, bus lines, bicycle pathways, and pedestrian walkways offer the best of all possible worlds in providing mobility, low-cost transportation, and a healthy urban environment.

A rail system provides the foundation for a city’s transportation. Rails are geographically fixed, providing a permanent means of transport that people can count on. Once in place, the nodes on such a system become the obvious places to concentrate office buildings, high-rise apartment buildings, and shops.

Whether the best fit is underground rail, light-rail surface systems, or both depends in part on city size and geography. Berlin, for example, has both. Megacities regularly turn to underground rail systems to provide mobility. For cities of intermediate size, light rail is often an attractive option. 15

As noted earlier, some of the most innovative public transportation systems, those that shift huge numbers of people from cars into buses, have been developed in Curitiba and Bogotá. The success of Bogotá’s BRT system, TransMilenio, which uses special express lanes to move people quickly through the city, is being replicated not only in six other Colombian cities but in scores elsewhere too, including Mexico City, São Paulo, Hanoi, Seoul, Istanbul, and Quito. In China, Beijing is one of eight cities with BRT systems in operation. 16

In Mexico City, the latest extension of the Insurgentes Avenue BRT corridor from 13 miles to 19 miles and the addition of 26 new articulated buses enables this line to carry 260,000 passengers daily. By 2012, the city plans to have 10 BRT lines in operation. And in southern China, by the end of 2009 Guangzhou will put into operation its BRT, which is designed to carry more than 600,000 passengers each day. In addition to linking with the city’s underground Metro in three places, it will be paralleled throughout its entirety with a bike lane. Guangzhou will also have 5,500 bike parking spaces for those using a bike-BRT travel combination. 17

In Iran, Tehran launched its first BRT line in early 2008. Several more lines are in the development stage, and all will be integrated with the city’s new subway lines. Several cities in Africa are also planning BRT systems. Even industrial-country cities such as Ottawa, Toronto, New York, Minneapolis, Chicago, Las Vegas, and—much to everyone’s delight—Los Angeles have launched or are now considering BRT systems. 18

Some cities are reducing traffic congestion and air pollution by charging cars to enter the city. Singapore, long a leader in urban transport innovation, was one of the first to tax vehicles entering the city center. Electronic sensors identify each car and then debit the owner’s credit card. This system has reduced the number of automobiles in Singapore, providing its residents with both more mobility and cleaner air. 19

Singapore has been joined by three Norwegian cities—Oslo, Bergen, and Trondheim—as well as London and Stockholm. In London—where until recently the average speed of an automobile was comparable to that of a horse-drawn carriage a century ago—a congestion fee was adopted in early 2003. The initial £5 (about $8 at the time) charge on all motorists driving into the center city between 7 a.m. and 6:30 p.m. immediately reduced the number of vehicles, permitting traffic to flow more freely while cutting pollution and noise. 20

In the first year after the new tax was introduced, the number of people using buses to travel into central London climbed by 38 percent and vehicle speeds on key thoroughfares increased by 21 percent. In July 2005, the congestion fee was raised to £8. Then in February 2007, the charging zone was extended westward. With the revenue from the congestion fee being used to upgrade and expand public transit, Londoners are steadily shifting from cars to buses, the subway, and bicycles. Since the congestion charge was adopted, the daily flow of cars and minicabs into central London during peak hours has dropped by 36 percent while the number of bicycles has increased by 66 percent. 21

In January 2008, Milan adopted a “pollution charge” of $14 on vehicles entering its historic center in daytime hours during the week. Other cities now considering similar measures include San Francisco, Turin, Genoa, Kiev, Dublin, and Auckland. 22

Paris Mayor Bertrand Delanoë, who was elected in 2001, inherited some of Europe’s worst traffic congestion and air pollution. He decided traffic would have to be cut 40 percent by 2020. The first step was to invest in better transit in outlying regions to ensure that everyone in the greater Paris area had access to high-quality public transit. The next step was to create express lanes on main thoroughfares for buses and bicycles, thus reducing the number of lanes for cars. As the speed of buses increased, more people used them. 23

A third innovative initiative in Paris was the establishment of a city bicycle rental program that has 20,600 bikes available at 1,450 docking stations throughout the city. Access to the bikes is by credit card, with a choice of daily, weekly, or annual rates ranging from just over $1 per day to $40 per year. If the bike is used for fewer than 30 minutes, the ride is free. Based on the first two years, the bicycles are proving to be immensely popular—with 48 million trips taken. Patrick Allin, a Parisian and an enthusiastic user of the bikes, says they are great for conversation: “We are no longer all alone in our cars—we are sharing. It’s really changed the atmosphere here; people chat at the stations and even at traffic lights.” 24

In writing about the program in the New York Times, Serge Schmemann draws a “lesson for all big cities: this is an idea whose time has come.” At this point Mayor Delanoë is working hard to realize his goal of cutting car traffic by 40 percent and carbon emissions by a similar amount by 2020. The popularity of this bike sharing program has led to its extension into 30 of the city’s suburbs and has inspired cities such as London to also introduce bike sharing. 25

The United States, which has lagged far behind Europe in developing diversified urban transport systems, is being swept by a “complete streets” movement, an effort to ensure that streets are friendly to pedestrians and bicycles as well as to cars. Many American communities lack sidewalks and bike lanes, making it difficult for pedestrians and cyclists to get around safely, particularly where streets are heavily traveled. In Charlotte, North Carolina, transportation planning manager Norm Steinman says: “We didn’t build sidewalks here for 50 years. Streets designed by traffic engineers in the ‘60s, ‘70s, ‘80s, and ‘90s were mostly for autos.” 26

This cars-only model is being challenged by the National Complete Streets Coalition, a powerful assemblage of citizen groups, including the Natural Resources Defense Council, AARP (an organization of 40 million older Americans), and numerous local and national cycling organizations. The complete streets movement is the product of a “perfect storm of issues coming together,” says Randy Neufeld, Chief Strategy Officer for the Active Transportation Alliance. Among these issues are the obesity epidemic, rising gasoline prices, the urgent need to cut carbon emissions, air pollution, and mobility constraints on aging baby boomers. The elderly who live in urban areas without sidewalks and who no longer drive are effectively imprisoned in their own homes. 27

The National Complete Streets Coalition, headed by Barbara McCann, reports that as of July 2009, complete streets policies are in place in 18 states, including California and Illinois, and in 46 cities. One reason states have become interested in passing such legislation is that integrating bike paths and sidewalks into a project from the beginning is much less costly than adding them later. As McCann notes, it is “cheaper to do it right the first time.” A national complete streets bill was introduced in both houses of Congress in early 2009. 28

Closely related to this approach is a movement that encourages and facilitates walking to school. Beginning in the United Kingdom in 1994, it has now spread to some 40 countries, including the United States. Forty years ago, more than 40 percent of all U.S. children walked or biked to school, but now the figure is under 15 percent. Today 60 percent are driven or drive to school. Not only does this contribute to childhood obesity, but the American Academy of Pediatrics reports fatalities and injuries are much higher among children going to school in cars than among those who walk or ride in school buses. Among the potential benefits of the Walk to School movement is a reduction in obesity and early onset diabetes. 29

Countries with well-developed urban transit systems and a mature bicycle infrastructure are much better positioned to withstand the stresses of a downturn in world oil production than those that depend heavily on cars. With a full array of walking and biking options, the number of trips by car can easily be cut by 10–20 percent. 30


*Data and additional resources have been omitted from this mobile version of our website to ensure the most optimal experience. To view this page with its entire information, please visit the full website.